Comparison of Agricultural Spray Measurement Techniques

Steven A. Fredericksa, Daniel C Bissella, Christopher J. Hoganb, Bernard Olsonb, Lillian C Magidowa, Gregory K Dahla, Joe V Gednalskea

aWinfield United, River Falls, WI
bUniversity of Minnesota, Department of Mechanical Engineering, Minneapolis, MN
Outline

• What are we measuring?
 • Droplet size distributions
 • Distribution Statistics

• What story does that tell us?
 • Interpreting distributions

• How do we measure it?
 • Measurement techniques

• When should we choose which method?
Droplet Size Distributions

• **Histogram**
 • \(dV \) plotted against \(D \)
 • Sensitive to binning
 • Choice of \(dD \) important
 • Usually default output

• **Cumulative**
 • \(\sum dV \) plotted against \(D \)
 • Hard to identify peak locations or multimodal distributions
Droplet Size Distributions

• Distribution Function
 • dV/dD plotted against D
 • Less sensitive to binning
 • Easy to manipulate mathematically
 • Best choice for performing fits
 • Poisson Distribution
 • Log Normal Distribution
 • Gamma Distribution
Weighted Distributions

- **Volume** – spray volume in a size bin: $dV = \frac{\pi}{6} D^3 dN$
- **Number** – number of droplets in a size bin: dN
- **Area** – surface area in a size bin: $dA = 4\pi D^2 dN$
Weighted Distributions – Physical Meaning

Number VS Volume
Weighted Distributions – What they tell us

• Volume (or mass)
 • Gives dosing information
 • Standard for air quality measurements (μg/m³)
 • Weighted towards larger drops

• Number (or frequency)
 • Governs transport process
 • Gives insight into atomization process
 • Weighed towards smaller drops

• Area
 • Governs optical properties (haze)
 • Used in respiratory health and inhaled pharmaceuticals
Distribution Statistics

• Reduce full distribution to representative value(s)
• Potentially remove important information
• Common Examples:
 • Weighted Means: \(D_{i,0} = \frac{\sum (dN \ast D^i)}{N} \)
 • Diameter of average drop in the spray
 • Weighted Medians: \(D_{\phi_{0.5}} \) 50% in Cumulative Distribution
 • 50% of spray will be in drops larger diameter
 • Relative Spans: \(\left(D_{\phi_{0.9}} - D_{\phi_{0.1}} \right) / D_{\phi_{0.5}} \)
 • Distribution width approximation
 • Fraction below threshold
Statistics Example – XR 11003 with water

\[D_{1.0} = 107, \quad D_{2.0} = 266, \quad D_{3.0} = 354 \]

\[88.2\% \]
\[44.1\% \]
\[22.4\% \]

\[D_{N0.5} = 75 \]
\[D_{V0.5} = 320 \]
\[D_{A0.5} = 219 \]

150 µm
Distribution Statistics

• More descriptive, but less common
 • Fit parameters
 • Gaussian
 • Poisson
 • Log Normal
 • Gamma
 • Moments: \(\mu_i = \int d^i \ast \phi(d) dd \)
 • Standard Central Moments: \(\frac{\mu_i}{\mu_2^{i/2}} = \frac{\int (d-\mu_1)^i \ast \phi(d) dd}{(\int (d-\mu_1)^2 \ast \phi(d) dd)^{i/2}} \)
 • mean, standard deviation, skew, kurtosis, etc.
Distribution vs Statistics

• Statistics
 • Easy to communicate
 • (Try to) collapse distribution to representative values
 • Increase number of statistics reported to better classify the distribution

• Distributions
 • Tell the whole story
 • Same VMD and % fines can have very different dynamics
Measurement Methods

• Optical Sizing – Usually lab methods
 • Imaging (Flow Visualization/Shadowgraphy)
 • Laser Diffraction (LD)
 • Phase Doppler Particle Analysis (PDPA)

• Aerodynamic Sampling – Usually field methods
 • Filter Samplers
 • Impactors
 • Elutriators
Imaging (Flow Visualization/Shadowgraphy)

- Camera
- Plane of Best Focus
- Focal Depth / Depth of Field
- Back Light Illumination (Diffuse or Collimated)
Imaging Takeaways

• Good for qualitative observations
• Difficult to produce quantitative measurements
• Require several frames for converged statistics
• Resolution and framerate limited
• Depth of field influences size measurement
• Out of focus rejection required
Laser Diffraction
Laser Diffraction Takeaways

• Integrated, volumetric measurement
• Measures spatial intensity distribution
• Distribution measurement
• Low sensitivity to drop shape and refractive index
Phase Doppler Particle Analysis
Phase Doppler Particle Analysis
Phase Doppler Particle Analysis Takeaways

• Point measurement
• Sensitive to drop shape and complex refractive index
• Information about individual drops
• Size and velocity information
Measurement Comparisons – Field of View

Laser Diffraction

Phase Doppler Particle Analysis

Imaging (variable)

Not To Scale
Measurement Comparisons - Experiment

- Standalone spray stand
- TSI 2-component PDPA, FSA3500
- Internal Reflection, $D_{\text{max}} \sim 1700\text{um}$
- 120 mm downstream of outlet, 33 sweeps 3mm increments

- Wind tunnel environment, 15mph
- Sympatec HELOS, R7 lens,
- $D_{\text{max}} \sim 2200\text{um}$, 9ms Sampling Rate
- 400 mm downstream
Laser Diffraction Selected Data – TTI 11004

Roundup + Xtendimax
Truncated Leading Edge in LD

- Only observed in number distributions
- Moves as peak shifts
- Data inversion/fitting artifact?
- Large droplets obscuring small ones?
Droplet Obscuration

Droplet overlap very common in volumetric measurements.
Droplet overlap very common in volumetric measurements.

Frame B

156.4 um
74.8 um
380.8 um
PDPA Selected Data – TTI 11004

Roundup + Xtendimax

Number Distribution

Volume Distribution
Non-Spherical Droplets in PDPA
Data Intercomparison – TTI 11004

Roundup + Xtendimax

Number Distribution

Volume Distribution

LD
PDPA
Data Intercomparison – TTI 11004

Roundup + Xtendimax + OnTarget

Number Distribution

Volume Distribution

LD
PDPA
Data Intercomparison – TTI 11004

Roundup + Xtendimax + OnTarget + InterLock

Number Distribution

Volume Distribution
Data Intercomparison – UR 11004

Roundup + Xtendimax

Number Distribution

Volume Distribution

LD

PDPA
Data Intercomparison – XR 11004

Roundup + Xtendimax

Number Distribution

Volume Distribution

\(\frac{dN_{\text{frac}}}{d\log(D)} \)

\(\frac{dV_{\text{frac}}}{d\log(D)} \)

LD
PDPA
Measurements Summary

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Imaging</th>
<th>Laser Diffraction</th>
<th>Phase Doppler Particle Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Volume</td>
<td>Largest, integrated in optical path, variable with optics</td>
<td>Large, integrated in optical path</td>
<td>Single point, flux measurement</td>
</tr>
<tr>
<td>Measurement Output</td>
<td>Qualitative, Individual droplet size possible</td>
<td>Binned size distribution</td>
<td>Individual droplet size and velocity</td>
</tr>
<tr>
<td>Challenges</td>
<td>Focusing, Image processing, Resolution</td>
<td>Black box data processing, Binned measurement</td>
<td>Non-spherical droplets, Inhomogeneous droplets</td>
</tr>
<tr>
<td>Advantages</td>
<td>Minimal equipment required</td>
<td>Turn-key operation, quick distribution measurements</td>
<td>Detailed per-drop data collection</td>
</tr>
<tr>
<td>Ease of Use</td>
<td>Minimal alignment, Extensive processing, Medium duration</td>
<td>Minimal alignment, Short sampling duration</td>
<td>Involved alignment/focusing, Long sampling duration</td>
</tr>
<tr>
<td>Best Choice For</td>
<td>Droplet interactions and spray morphology, Number distributions</td>
<td>Sharp distributions, high throughput testing, Volume distributions</td>
<td>Detailed droplet statistics, Broad distributions (>~1mm), Number distributions</td>
</tr>
</tbody>
</table>
Measurements Selection

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Imaging</th>
<th>Laser Diffraction</th>
<th>PDPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Sheet</td>
<td>☺</td>
<td></td>
<td>☺</td>
</tr>
<tr>
<td>Sheet Breakup</td>
<td>☺</td>
<td></td>
<td>☺</td>
</tr>
<tr>
<td>Droplet Size Distribution</td>
<td>☹</td>
<td>☺</td>
<td>☺</td>
</tr>
<tr>
<td>Number Distribution</td>
<td>☹</td>
<td>☹</td>
<td>☺</td>
</tr>
<tr>
<td>Volume Distribution</td>
<td>☹</td>
<td>☺</td>
<td>☺</td>
</tr>
<tr>
<td>Individual Droplet Data</td>
<td>☹</td>
<td></td>
<td>☺</td>
</tr>
<tr>
<td>Non-Spherical Droplets & Ligaments</td>
<td>☹</td>
<td>☺</td>
<td>☹</td>
</tr>
<tr>
<td>Droplet Velocity</td>
<td>☹</td>
<td></td>
<td>☺</td>
</tr>
<tr>
<td>Droplets with Emulsions (Complex Tank Mixes)</td>
<td>☹</td>
<td>☺</td>
<td>☹</td>
</tr>
<tr>
<td>Droplets with Solid Suspensions (SC Formulations)</td>
<td>☹</td>
<td>☺</td>
<td>☹</td>
</tr>
<tr>
<td>Droplets with Air Bubbles (Air Inclusion Nozzles)</td>
<td>☹</td>
<td>☺</td>
<td>☹</td>
</tr>
</tbody>
</table>

No Symbol: Not Possible ☺: Good Choice ☹: Possible but Difficult ☹: Likely to Produce Errors
Wrap Up

• There is no best measurement technique
 • Each technique has tradeoffs
 • Target the measurement to the question

• Winfield United is leveraging them all!
 • We have the capability to perform all 3 methods
 • Intercompare results for a more complete understanding

• Collaboration with UMN researchers
 • Developing improved calibration methods across all 3 techniques
Thank You

Q & A

Steven Fredericks
Sr. Research Engineer
Winfield United
Sfredericks@landolakes.com